Least-squares polynomial approximation

نویسندگان

  • Len Bos
  • Alvise Sommariva
  • Marco Vianello
چکیده

We construct symmetric polar WAMs (Weakly Admissible Meshes) with low cardinality for least-squares polynomial approximation on the disk. These are then mapped to an arbitrary triangle. Numerical tests show that the growth of the least-squares projection uniform norm is much slower than the theoretical bound, and even slower than that of the Lebesgue constant of the best known interpolation points for the triangle. As opposed to good interpolation points, such meshes are straightforward to compute for any degree. The construction can be extended to polygons by triangulation. 2000 AMS subject classification: 41A10, 41A63, 65D10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials

The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...

متن کامل

A Comparative Study of Least-Squares and the Weak-Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams

In this paper, a comparison of weak-form Galerkin and least-squares finite element models of Timoshenko beam theory with the von Kármán strains is presented. Computational characteristics of the two models and the influence of the polynomial orders used on the relative accuracies of the two models are discussed. The degree of approximation functions used varied from linear to the 5th order. In ...

متن کامل

MOX–Report No. 47/2013 Discrete least squares polynomial approximation with random evaluations - application to parametric and stochastic elliptic PDEs

Motivated by the numerical treatment of parametric and stochastic PDEs, we analyze the least-squares method for polynomial approximation of multivariate functions based on random sampling according to a given probability measure. Recent work has shown that in the univariate case and for the uniform distribution, the least-squares method is optimal in expectation in [1] and in probability in [7]...

متن کامل

Discrete least squares polynomial approximation with random evaluations – application to parametric and stochastic elliptic PDES

Motivated by the numerical treatment of parametric and stochastic PDEs, we analyze the least-squares method for polynomial approximation of multivariate functions based on random sampling according to a given probability measure. Recent work has shown that in the univariate case, the least-squares method is quasi-optimal in expectation in [8] and in probability in [20], under suitable condition...

متن کامل

Explicit solution of the polynomial least-squares approximation problem on Chebyshev extrema nodes

In this paper we propose an explicit solution to the polynomial least squares approximation problem on Chebyshev extrema nodes. We also show that the inverse of the normal matrix on this set of nodes can be represented as the sum of two symmetric matrices: a full rank matrix which admits a Cholesky factorization and a 2-rank matrix. Finally we discuss the numerical properties of the proposed fo...

متن کامل

Polynomial Meshes: Computation and Approximation

We present the software package WAM, written in Matlab, that generates Weakly Admissible Meshes and Discrete Extremal Sets of Fekete and Leja type, for 2d and 3d polynomial least squares and interpolation on compact sets with various geometries. Possible applications range from data fitting to high-order methods for PDEs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009